

International Semester in Telecommunications Engineering 2024/2025

Courses taught in English in 2024/2025	2
Project	3
Maximum number of students in each course	3
English level for students	3
Location	3
Class schedule	4
Autumn Semester	4
Spring Semester	5
Exam schedule	6
Autumn Semester	6
Spring Semester	6
Contact	6
Courses Syllabus:	7
Digital Electronics (DE)	7
Fundamentals of Machine Learning (FML)	9
Information and communications technology in automotive industry (ICTA)	11
Wireless Telecommunication Systems (WTS)	13
Numerical Algorithms (NA)	15
Advanced Mathematics (AM)	16
Introduction to business economics and administration (ECO)	18
Introduction to signal processing (ISP)	19

Courses taught in English in 2024/2025

Area	Acronym	Name	ECTS	Semester ¹	UVa course code
Electronics	DE	Digital Electronics	6	1	48072
	FML Fundamentals of Machine Learning		6	1	75097
Signal Theory &	ICTA	Information and communications technology in automotive industry	6	1	46675
Communications	WTS	Wireless Telecommunication Systems	6	2	45045
	ISP	Introduction to Signal Processing	6	2	75105
Mathematics	AM	Advanced Mathematics	6	2	48068
Mathematics	NA	Numerical Algorithms	6	1	45032
Economy ECO Introduction to business economics and administration		6	1	45010	
		Bachelor's degree final project	6	1 or 2	45036
Signal Theory, Communications, Telematic	PROJECT ²	Bachelor's degree final project	12	1 or 2	46683 or 46684 or 46680
Engineering and Electronics		Internship	6	1 or 2	45035
		Master's degree final project	12	1 or 2	55260

¹ 1: Autumn (lectures from September 10 to December 20, 2024; exams from January 8 to February 7, 2025)

2: Spring (lectures from February 10 to May 29, 2025; exams from June 2 to June 30)

² PROJECT: students can choose one final project with or without internship, using the appropriate course codes, to make a combination 6, 12 or 18 ECTS.

Project

Students of the International Semester can do their degree's final project with us. This can imply taking two UVa courses: one of the available bachelor's or master's final project (course codes and different effort in ECTS vary among the programs we offer), optionally complemented by an internship in the research group to make a deeper final project. The project can be taken in any of the two semesters and it is also possible to take it during the full year.

Students will have to develop a project in the area of Telecommunications. Two departments will offer projects to international students: Signal Theory, Communications and Telematic Engineering, and Electronics.

When a student wants to take a project, she/he must contact the ETSIT International Coordinator (IC) (<u>subdireccion.relaciones.tel@uva.es</u>) and send him both a Curriculum Vitae and a list of areas of interest. If the CRI considers that she/he is eligible, the IC will distribute the CV between the different research groups working in the areas suggested by the students. Research groups interested in the students will contact her/him directly and offer different topics for the project. When the student reaches an agreement with the research group, she/he will contact the IC and the research group to confirm the agreement. This process has to be completed before signing any learning agreement.

Maximum number of students in each course

The maximum number of admitted student in each course is 20.

English level for students

All students are required a B2 level of English.

Location

Classes will be planned in ETSITs rooms (classroom and laboratories). The project will be taken in the premises of each research group.

Class schedule

Autumn Semester

	Monday	Tuesday	Wednesday	Thursday	Friday
9h	FML A107	FML A107	ICTA 1L013/1L014	DE A107	
10h	FML A107	FML A107	ICTA 1L013/1L014	DE A107	
11h	NA A107/2L001	DE A107/1L020	ICTA 1L013/1L014	NA A107	
12h	NA A107/2L001	DE A107/L020	ICTA 1L013/1L014	NA A107	
13h					
14h					
15h					
16h			ECO A107	ECO A107	
17h			ECO A107	ECO A107	
18h					
19h					

Spring Semester

	Monday	Tuesday	Wednesday	Thursday	Friday
9h			ISP A108	ISP 2L003	
10h			ISP A108	ISP 2L003	
11h			AM A107	AM A107	
12h			AM A107	AM A107	
13h					
14h					
15h					
16h			WTS A107		
17h			WTS A107		
18h					WTS 2L004-5
19h					WST 2L004-5

Exam schedule

Students have two opportunities to pass the courses. The first ("ordinary" call) will be either a final exam or a set of intermediate exams or reports during the course. The second ("resit") will always be a final exam or report and will only apply if a student fails in the first call.

Autumn Semester

Course	Ordinary call	Resit
DE	Jan 13, morning & afternoon	Jan 30, morning & afternoon
FML	Interim reports	Final report
NA	Jan 8, afternoon	Feb 9, afternoon
ECO	Jan 9, morning	Feb 27, morning
ICTA	Jan 15, morning	Feb 3, morning

Spring Semester

Course	Ordinary call	Resit
AM	Jun 12, morning	Jun 30, morning
WTS	Jun 13, afternoon	Jun 27, afternoon
ISP	Jun 4, afternoon	Jun 18, afternoon

Contact

ETSIT International Coordinator (CRI) is Eduardo Gómez Sánchez: <u>subdireccion.relaciones.tel@uva.es</u>

Courses Syllabus:

Code number:	48072	Number of ECTS:	6 ECTS
Semester:	Autumn	Language:	English
	I	Language.	LIIGIISII
Lecturer(s) and conta	ict:		
• Dr. Luis Albe	erto Marqués Cuesta (<u>Im</u>	arques@ele.uva.es)	
Learning goals:			
	irse, the student must b		
		concepts related to digital ele	
-		ic digital electronic circuits fro	om logic gates, combinational
-	ential modules.		
	ong the different types	of mass storage systems, thos	e that fit a specific
application.			
		lescription languages for the d	lesign of digital blocks and
-	ent verification of their	-	
• •	an and manage laborate	•	
		orally, the procedure used in t	he laboratory and the
difficulties t	hat may arise.		
Contents:			
UNIT 1 - FUNDAMEN	ITALS		
1.1 Introdu	iction.		
1.2 Boolea	n Algebra.		
1.3 Two-va	riable logic functions. F	unctional completeness.	
	ation coding.		
	zation of logic functions	5. Canonical form.	
UNIT 2 – COMBINAT			
2.1 Introdu			
	R design and analysis.		
	NOR design and analysis	S.	
2.4 Hazard	•••		
	<u>1</u> – Structural design (1s	st part).	
UNIT 3 – COMBINAT			
3.1 Introdu 3.2 Decode			
3.3 Encode			
3.4 Code c			
3.5 Multipl			
3.6 Demult			
3.7 Compa			
3.8 Adder.			
	etic-Logic Unit (ALU).		
	<u>2</u> – Structural design (2r	nd part).	
	<u>3</u> – RTL design.	. ,	
UNIT 4 – LATCHES AN			
4.1 Introdu	iction.		
	atches.		

Ingenieros de Telecomunicación

4.3 Dynamic latches.
4.4 Flip-flops.
UNIT 5 – SEQUENTIAL CIRCUITS
5.1 Introduction.
5.2 Design procedure.
5.3 Moore and Mealy automata.
Lab session 4 – Algorithm-based description (1st part).
UNIT 6 – SEQUENTIAL MODULES
6.1 Introduction.
6.2 Storage registers.
6.3 Transferring digital information. Buses.
6.4 Counters.
6.5 Shift registers.
6.6 Operational registers.
Lab session 5 – Algorithm-based description (2nd part).
UNIT 7 – MEMORIES
7.1 Introduction.
7.2 Random access memories.
7.3 Sequential memories.
Prerequisites:
None.
Assessment:

Midterm exam (units 1-3) and final exam (units 4-7) account for 60% of the grade. Another practical, laboratory exam accounts for 40% of the grade.

Fundamentals of Machine Learning (FML)			
Code number:	75097	Number of ECTS:	6 ECTS
Semester:	Autumn	Language:	English

Lecturer(s) and contact:

- Dr. Miguel Ángel Martín Fernández (migmar@tel.uva.es)
- Dr. Lara del Val Puente (<u>lara.val@uva.es</u>)

Learning goals:

At the end of the course the student must be able to:

- Explain what machine learning is and enumerate the type of machine learning types.
- Describe the basic theory of machine learning and its practical implications in system design.
- Describe and apply various models of supervised and unsupervised machine learning.
- Describe and apply regularization, validation and aggregation techniques in the development of systems based on machine learning.
- Implement systems based on machine learning using Python.

Contents:

LESSON 0: Presentation and Introduction to Python

- LESSON 1: Introduction to machine learning
- LESSON 2: Is it feasible to learn? (First part)
- LESSON 3: The linear model: Classification and linear regression
- LESSON 4: Is it feasible to learn? (Second part)
- LESSON 5: The linear model: Logistic regression
- **LESSON 6: Regularization**
- **LESSON 7: Validation**
- LESSON 8: Neural networks
- LESSON 9: Support vector machines (SVM)
- **LESSON 10: Decision trees**
- LESSON 11: Some aspects to take into account in the design of supervised learning systems
- LESSON 12: Clustering
- LESSON 13: Dimensionality reduction
- LESSON 14: Deep Learning

Prerequisites:

Good knowledge in maths and basic programming skills. Students will need to bring their own laptop.

Assessment:

Assessment Instrument:

- 90% Lab exercises (minimum: 50%).
- 10% Attitude and participation in training activities (minimum: 50%).

Resit:

• The marks of attitude and participation in training activities of the ordinary call will be kept.

Code number:		number: 46675 Number o	Number of ECTS:	6 ECTS
Semester:		Autumn	Language:	English
Lecture	r(s) and contact:			
•	Dr. Juan Carlos A	Aguado Manzano (i	aguado@tel.uva.es)	
•		-	acio.miguel@tel.uva.es)	
Learnin		a tha student she	uld he able to:	
At the e		is, the student sho		evices and ICT (Information and
•		-	lications in vehicles.	
•			c protocols in vehicles.	
•	-			he physical layer of the basi
	protocols in veh			., ,
•	Enumerate and	describe ICT applic	ations and basic services in ve	ehicles.
•	Enumerate and	describe basic ele	ments of communications in	intra-vehicular, inter-vehicula
			nunication networks.	
•	• • •		nd devices for intra-vehicular	
•		entation from OEM	to develop and analyze ICT de	evices and applications in
	vehicles.			
Content	s:			
1.	Introduction to	Vehicle Telematics		
2.	Intra-Vehicular	communications. C	AN Bus.	
3.	Inttroduction to			
4.	Programming in			
5.			ating whole systems	
6. 7		communications. C	ither standards.	
7. 8.	Design of ECUs. ECU diagnosis.			
а. 9.	Dataloggers.			
	Eathroppers.			
Lab:	Dhusiaal lauser of	the CAN bus		
1. 2.	Physical layer of		Info-Call and Volume Control.	
2. 3.	CAN analysis: IG	-	nno-can and volume control.	
3. 4.	CAN analysis: Re			
5.		essages using CAN	be.	
6.	CAPL Program.			
7.	Captur Electroni	ic Architecture: Co	ntrolling Infotainment from CA	ANoe

- 8. MOST Optical Bus Analyzer.
- 9. ECU simulation using CANister. Breathalyzer design and development.
- 10. Datalogger. Diagnostics.

Prerequisites:

This is an intermediate course, intended for learners with a background in computer and electrical engineering. To succeed in this course, you should have the following knowledge prerequisites:

• Intermediate programming experience, preferable in C.

- Familiarity with protocols, communications networks and telematic services.
- Basic use of laboratory equipment, mainly Oscilloscopes.

Assessment:

Online tests (10%), attitude and reports of labs corresponding to topics 1-6 (40%), attitude and reports of labs corresponding to topics 7-9 (35%), final test (15%).

Code number:		45045	Number of ECTS:	6 ECTS			
Semester:		Spring	Language:	English			
ecture	r(s) and contact:						
•	Dr. Ramón de la	Rosa Steinz (<u>ramros@t</u>	el.uva.es)				
•	Dr. Alfonso Bahi	llo Martínez (<u>alfonso.ba</u>	hillo@uva.es)				
	Know the option Work with regu Work with spec Identify transmi Connect the bas Interpret the te Estimate the rac Enumerate and	lations related to the ra- ifications related to rad ssions with spectrum a sic parameters that char chnology involved in the dio coverage in point-to describe the communic	field of the radio amateur o dio frequency spectrum mai io telecommunication syster nalysis equipment. racterise a radio frequency s e radio telecommunication s -point systems.	nagement. ms. ystem. systems.			
Conten 1. 2.	AN INTRODUCT Concept revisio as a way to exp ANTENNA SYST Review of chara	n. Logarithmic units. Th eriment. EMS TECHNOLOGY: loteristics and paramete	e radio frequency spectrum ers defining the antennas. An				
3.	RECEIVERS AND Receivers techn	applied to communication systems. RECEIVERS AND TRANSMITTERS: Receivers technology. Transmitters technology. Interpreting transceiver wiring diagrams. The evolution of the radio. Software defined radio (SDR).					
4.		ulation (AM) radio broa	dcasting. Frequency modula g: RDS y DAB. Modulating in				
5.	Introduction an budget. Types c	of satellites. Satellites ar	neters that influence the con ad radio amateur operation.	Related modulating			
6.	Basic standards MSK, GMSK. Th	chemas: FSK and PSK. Radio links. Coverage estimation with software. ELLULAR TELECOMMUNICATIONS: asic standards. Second generation (2G): GSM, GPRS and EDGE. Modulations related to 2G. /SK, GMSK. Third generation (3G) and subsequent generations. UMTS, LTE, 5G. Modulations elated to 3G and subsequent generations. Spread spectrum.					
7.		WIRELESS DATA COMM 802.11 – ISO/IEC 8802-	UNICATIONS: 11 (Wi-Fi). Other technologi	es.			

Prerequisites:

It will be very helpful some basic knowledge about electronics to understand schemas, and ability to

understand the concept of electromagnetic waves and its location in the radio frequency spectrum. For the applied part of the subject, it will be helpful some basic knowledge of the laboratory of electronic instrumentation (oscilloscope, multimeter, function generator), reasonable manual skills and being resourceful to build small prototypes.

Assessment:

Final exam (60%), reports and demonstration of a laboratory project (30%), regular in-class activities (10%).

Code number:	45032	Number of ECTS:	6 ECTS			
Semester:	Autumn	Language:	English			
Lecturer(s) and con	tact:					
• Dr. Eduard	o Cuesta Montero (<u>edua</u>	rdo.cuesta@uva.es)				
 Understan Understan computati Understan solve math Learn how methods. Learn how Understan Learn how Understan Learn how Earn how Dearn the and Know how Demonstration 	d how computers repres ons on computers. d how we describe error nematical equations and to solve a system of line to solve least-squares pr d how to approximate th to solve definite integral application of the FFT . to solve complex differe	I methods and the need for n ent numbers and how these is s and approximations that re- approximate mathematical fu ar equations numerically usin roblems. The functions using interpolating and initial value problems r ntial problems. Imerical techniques to simple	impact mathematical sult from using computers to unctions. ng direct and iterative ng polynomials. numerically.			
Contents: 1. PYTHON p	rogramming.					
2. Direct met	Direct methods for solving of linear systems.					
3. Least squa	3. Least squares approximation.					
4. Iteration: l	teration: linear and nonlinear.					
5. The matrix	The matrix eigenvalue problem.					
6. Lagrangiar	Lagrangian interpolation.					
7. Numerical	integration and different	tiation.				
8. Trigonome	tric interpolation.					
9. Numerical	solution to ordinary diffe	erential equations.				
10. Numerical	10. Numerical solution to partial differential equations.					

Code number: Semester:		48068	Number of ECTS:	6 ECTS			
		Spring	Language:	English			
Lecture	r(s) and conta	ct:					
•	Dr. Eduardo	Cuesta Montero (<u>edua</u>	ardo.cuesta@uva.es)				
	Manage prof differential e Solve analyti Model mathe Numerically Discover the fact the ones Use recomm	equations. cally the most commo ematically a wide rang solve some common relationship between related to Telecomm ended bibliography to further mathematical	lex variable and vector calculu	ntial equations in engineering . egree. engineering. ourse and other subjects, in neering.			
Content 1.	ts: PARAMETRIC Parametric c	C CURVES AND COMP urves, elementary co	mplex functions, complex deri	vation and integration.			
2.	Applications in practical instances. FOURIER ANALYSIS:						
	Fourier serie processing.	rier series, Fourier transform, and discrete Fourier transform. Applications in signal					
3.	POWER SERIES AND LAPLACE TRANSFORM:						
Power series, Laurent series, Z-transform, linear systems.		nsform, and Laplace transforr	and Laplace transform. Applications in the study of				
4.	ORDINARY DIFFERENTIAL EQUATIONS:						
	Ordinary differential equations (ODEs) of order one and two. Applications in electric and electric ord electronic circuits analysis.						
5.	NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS:						
	Explicit and implicit Euler method, and higher order methods.						
6.	PARTIAL DIFFERENTIAL EQUATIONS:						
	Separation of variable method, Fourier method, and nonhomogeneous problems. Applications in wave propagation and diffusion processes.						
7.	NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS:						
	Difference equations schemes, for 1- and 2-dimensional problems.						

Some background on linear algebra and calculus is strongly recommended.

Assessment:

Written exam for the theoretical part and laboratory assignments for the part related to numerical methods.

course.

Final exam (Questionnaire)

Code number:	4501	45010 Number of ECTS: 6 ECTS		6 ECTS
Semester:	Autu	mn	Language:	English
Lecturer(s) and conta	ict:			
			galeixandre@uva.es)	
Dr. Juan José	é Juste Carrió	n (juan.juste)	@uva.es)	
Learning goals:				
At the end of this sec				
			omy and the company to the te	
-	different type f equilibrium	-	nies, market structures, being a of them	bie to calculate prices and
-	-		ompanies and their sources of	financing.
			itutional framework of the con	-
Contents:				
-	concepts in e	-		
-	ise and the er	-	n: demand and supply.	
-	costs, revenu			
-	perfect comp			
	-competitive			
	aisal decision		pany.	
			mpany and business financing.	
			, ,	
Prerequisites: There are no academ	ic preconditi	ons to take t	his course	
Assessment:				
///////////////////////////////////////				
Assessment instr	liments	Final grade	Obser	vations
Assessment instr	uments	Final grade percentage		
	very of in-	-	Obser Each unit has in-class and out All the activities done either	t-of-class activities.

 Final exam (Problems)
 25%
 out of 5 in each of the two parts (questionnaire and problems).

 • Ordinary call: The final assessment of the course is the weighted sum of the different assessment instruments.

25%

• Extraordinary call (the final exam will be repeated): The assessment is the best of these two options: o Option 1: Considering the continuous assessment.

o Option 2: Without considering the continuous evaluation. The final exam will be 100% of the score.

than 5 points out of 10;

It is necessary to score in the final exam equal to or higher

It is necessary to score equal to or higher than 1,5 points

Code number:		75105	1	Number of ECTS:	6 ECTS		
Semester:		Spring		Language:	English		
Lecture	er(s) and contact:						
•	Dr. Tomasz Pieci	iak (<u>tpieciak@tel.uv</u>	a.es)				
Learnin	ig goals:						
At the e	end of the course,	, the student will be	able to:				
•	Differentiate sig	nal types and their	represent	ations.			
•	Analyze signals i	in time, frequency a	ind time-f	requency domains.			
•	Design low- and	high-pass digital fil	ters and fi	ilter a digital signal (i.e. electrocardiogram)		
•	Characterize the	e self-affinity of a bi	omedical	signal.			
٠	Implement own	basic digital signal	procedure	25.			
1.	processing, cont	tinuous, discrete an	d digital s	ignals.	matical analysis used ir	n signa	
2.							
3.							
4.	Continuous and discrete-time Fourier transform, discrete cosine transform, sliding DFT, coherence, short-time Fourier transform, Fast Fourier Transform (Cooley-Tukey algorithm).						
5.	Low- and high-pass filters, Finite and Infinite Impulse Response (FIR, IIR) filters design, filtering parametric windows.						
6.	Detrended fluctuation analysis (DFA).						
Laborat 1.	tory classes: Sinusoidal signa	l generation with sp	ecific par	ameters and noise c	listribution.		
2.	Implementing own DFT and sliding DFT procedures.						
3.	Implementing own low- and high-pass filter design procedures.						
4.	Implementing own linear convolution procedure, filtering electrocardiogram signal.						
5.	Implementing own short-time Fourier transform with an application to biomedical signals.						
6.	Implementing own FFT procedure (Cooley-Tukey algorithm).						
	Implementing own DFA procedure with an application to heart rate analysis.						

Assessment:

The grade is exclusively based on the written exam conducted at the end of the semester. The exam includes two parts: theoretical (50%) and practical part (50%). The theoretical part includes solving

calculus problems, while the practical one focuses on implementing signal processing procedures.